
Le equazioni di primo grado sono equazioni che hanno per oggetto gli zeri di polinomi di primo grado.
La forma caratteristica con cui si presentano è del tipo:

ESEMPI DI EQUAZIONI DI PRIMO GRADO
Esempi caratteristici di equazioni di primo grado sono dunque i seguenti:

FORME DIVERSE DI EQUAZIONI DI PRIMO GRADO
Le equazioni di primo grado possono anche presentarsi in forme non caratteristiche, come ad esempio:

L’importante è che il grado massimo dei polinomi non superi il grado.
Questo anche ad opera di future semplificazioni.
Un esempio di questo tipo può essere:

LE EQUAZIONI IN GENERALE
Prima di vedere come si risolve un’equazione di primo grado andiamo a vedere il concetto generale di equazione.
La forma generale di un’equazione è del tipo:

Dove:



SCOPRI I CORSI DI MATEMATICA
Se stai preparando l’esame di matematica e vuoi una preparazione completa, scopri i corsi di matematica per completare al meglio la tua conoscenza!
LE IDENTITA’ PERFETTE
Le equazioni più semplici sono ovviamente delle identità perfette, come ad esempio:



Ma possono anche essere delle espressioni con i relativi risultati:


Oppure semplicemente espressioni equivalenti.
Pensiamo ad esempio a:


Semplice no?
In realtà la cosa si è un po’ più complicata durante la storia della matematica.
Infatti nelle equazioni compare sempre un termine incognito o incognita, che di solito chiamiamo x.
Consideriamo il seguente esempio:


Semplice no?
In realtà la cosa si è un po’ più complicata durante la storia della matematica.
Infatti nelle equazioni compare sempre un termine incognito o incognita, che di solito chiamiamo x.
Consideriamo il seguente esempio:

Non ci vuole molto per capire che il valore della x è pari a 1.
Infatti:

Non fa una piega!
Le equazioni possono essere tuttavia un po’ più complesse di queste.
Se consideriamo il seguente esempio:

In questo caso infatti risulta più complicato arrivare alla conclusione che la x può assumere come valori sia il 2 che il –3.
Infatti:
Le equazioni possono essere tuttavia un po’ più complesse di queste.
Se consideriamo il seguente esempio:

In questo caso infatti risulta più complicato arrivare alla conclusione che la x può assumere come valori sia il 2 che il –3.
Infatti:


Come facciamo però a trovare i valori dell’incognita x ?
REGOLE GENERALI PER LE EQUAZIONI
I primi strumenti che possiamo utilizzare per risolvere le equazioni (di qualsiasi genere) sono le operazioni.
Chiaramente le possiamo elencare in ordine di difficoltà:
- Somme e differenza
- Moltiplicazioni e divisioni
- Potenze e radici
- Altre operazioni (moduli, esponenziali, logaritmi, funzioni goniometriche, …)
Andiamo qui ad enunciare tre semplici regole che valgono per tutte le equazioni.
In ordine elenchiamo:
- Regola della somma e della differenza
- Regola della moltiplicazione e della divisione
- Regole delle potenze e delle altre operazioni
REGOLA DELLA SOMMA E DELLA DIFFERENZA
Partendo da:

Possiamo sommare o sottrarre una stessa quantità da ambo i membri e l’equazione non cambia:
Con la somma abbiamo che:

Mentre con la differenza:

In generale possiamo anche scrivere:

REGOLA DELLA MOLTIPLICAZIONE E DELLA DIVISIONE
Partendo da:

Possiamo moltiplicare o dividere per una stessa quantità da ambo i membri e l’equazione non cambia:
Con la moltiplicazione abbiamo che:

Mentre con la divisione:

In generale possiamo anche scrivere:

REGOLA DELLA POTENZA E DELLE ALTRE OPERAZIONI
Le regole delle equazioni che valgono per le operazioni fondamentali più semplici, valgono anche ingenerale per le altre operazioni.
A partire in primis per le potenze:

E dalle radici

Ma anche per gli esponenziali

E la loro operazione inversa che sono i logaritmi:

Oltre che per valori assoluti e tutte le funzioni della trigonometria:



SCOPRI I CORSI DI MATEMATICA
Se stai preparando l’esame di matematica e vuoi una preparazione completa, scopri i corsi di matematica per completare al meglio la tua conoscenza!
RISOLVERE EQUAZIONI DI PRIMO GRADO
Le equazioni più semplici in matematica sono le equazioni di primo grado.
Ricordiamo che la forma caratteristica di un’equazione di primo grado impone l’eguaglianza di un polinomio in x (ad una sola incognita) uguale a zero.

Ma abbiamo anche già visto che possono in generale presentarsi in modi diversi.
Risolvere questo tipo di equazioni risulta relativamente semplice.
In quanto ci basta applicare le prime due regole per le equazioni viste qui sopra.
REGOLA DELLA SOMMA E DELLA DIFFERENZA PER LE EQUAZIONI DI PRIMO GRADO
Una regola che certamente si utilizza per risolvere equazioni di primo grado è quella della somma e della differenza.
Questa regola ci dice che possiamo sommare o sottrarre una stessa quantità da entrambi i membri dell’equazione e questa ultima non cambia.

Questa regola risulta particolarmente comoda quando l’incognita è legata ad una costante mediante una somma.

In questo caso sottraiamo da entrambi i termini la quantità a.

Questo ovviamente al fine di “far sparire” questa costante sul lato sinistro dell’equazione che diventa zero (elemento neutro della somma)

In pratica sul lato sinistro ci resta solo la x, quello che cerchiamo.

Se proviamo a rivedere in maniera più veloce quello che è successo:

Notiamo immediatamente una cosa interessante.
Quando abbiamo spostato a destra” il +a, questo è diventato -a
In altre parole:
Varcando la soglia dell’uguale la somma si è trasformata in una differenza
La stessa cosa vale quindi per la differenza che si trasforma in una somma:

Riepilogando il tutto in maniera sintetica possiamo scrivere:

ESEMPI REGOLA SOMMA E DIFFERENZA
Facciamo una serie di semplici esempi per consolidare questa semplice procedura:

REGOLA DELLA MOLTIPLICAZIONE E DELLA DIVISIONE NELLE EQUAZIONI DI PRIMO GRADO
La regola della moltiplicazione e della divisione ci dice che possiamo moltiplicare oppure dividere ambo i membri dell’equazione per una stessa quantità e l’equazione non cambia.

Quando la nostra incognita x è legata ad un elemento mediante la moltiplicazione questa regola risulta di grande aiuto.
Ci riferiamo in questo caso a situazioni generali del tipo:

Per calcolare il valore di x dobbiamo “sbarazzarci” della costante a.
(Per ovvi motivi questa ultima è diversa da zero)
Decidiamo perciò di applicare ad entrambi i membri dell’equazione l’operazione inversa della moltiplicazione: la divisione.
Dividiamo quindi entrambi i membri dell’equazione per la costante a.

Sul lato sinistro la divisione di a per se stesso fa 1, che è l’elemento neutro della moltiplicazione.

In pratica ci resta solamente l’incognita.

Osserviamo “in modo più veloce” quello che succede a sinistra:

Notiamo che la moltiplicazione si trasforma in divisione, quando varca la soglia del simbolo uguale (=).
Dunque possiamo anche assumere il contrario.
Ovvero che anche la divisione si trasforma in moltiplicazione quando sorpassa l’uguale.

In generale possiamo anche scrivere così:

Prima di fare esempi pratici per l’applicazione di questa regola mostriamo una sintesi di quello che abbiamo detto sino ad ora:

ESEMPI REGOLA MOLTIPLICAZIONE E DIVISIONE
Svolgiamo qualche semplice esempio per la somma e la moltiplicazione.

SCOPRI I CORSI DI MATEMATICA
Se stai preparando l’esame di matematica e vuoi una preparazione completa, scopri i corsi di matematica per completare al meglio la tua conoscenza!
CAMBIARE SEGNO AD ENTRAMBI I MEMBRI DELL’EQUAZIONE
Soffermiamoci per un attimo su un paio di esempi che abbiamo svolto qui sopra:


Come possiamo notare per entrambi nel primo passaggio siamo andati a cambiare contemporaneamente il segno a destra e a sinistra.
Come è possibile questo?
Chiaramente siamo semplicemente andati ad applicare la regola della moltiplicazione.
In particolare abbiamo moltiplicato entrambi i membri dell’equazione per meno uno (–1).
Questa regola diventa particolarmente comoda quando il coefficiente della x è negativo.
REGOLA DELLA SOMMA E DELLA MOLTIPLICAZIONE INSIEME
Scommetto che le equazioni di primo grado che state risolvendo a scuola sono un po’ più difficili di quelle che ho presentato fino ad ora.
Andiamo perciò a svolgere equazioni di primo grado che devono per forza utilizzare entrambe le regole viste fino a qui.
ESEMPI DI EQUAZIONI DI PRIMO GRADO PIU’ DIFFICILI
Come si risolvono dunque le seguenti equazioni?

Partiamo a svolgere uno a uno con tutti i passaggi questi esempi
ESEMPIO 1


ESEMPIO 2


ESEMPIO 3


ESEMPIO 4


ESEMPIO 5


SCOPRI I CORSI DI MATEMATICA
Se stai preparando l’esame di matematica e vuoi una preparazione completa, scopri i corsi di matematica per completare al meglio la tua conoscenza!
EQUAZIONI DI PRIMO GRADO IMPOSSIBILI E INDETERMINATE
Un’equazione di primo grado può essere impossibile oppure indeterminata.
EQUAZIONI DI PRIMO GRADO IMPOSSIBILI
L’equazione è impossibile, quando alla fine dei conti otteniamo una cosa del tipo:

In questo caso vediamo che qualsiasi valore attribuiamo alla x l’equazione non è mai soddisfatta.
Pensiamo ad esempio a questo caso:

Proviamo a sostituire qualche numero al posto della x:



Potremmo andare avanti all’infinito.
Matematicamente possiamo anche scrivere:

Oppure anche:

Oppure ancora:

Infatti se sul lato sinistro moltiplichiamo la x per zero (elemento assorbente della moltiplicazione) il risultato sarà sempre zero!
Dunque non potrà mai essere uguale al termine non nullo che c’è sul lato destro.
ESEMPIO
Consideriamo il seguente esempio di equazione impossibile:

Moltiplichiamo a destra:

Spostiamo le x a sinistra e i numeri a destra:


L’equazione è impossibile!

Badate bene che ripartendo dal passaggio:

Possiamo anche eliminare i termini uguali 4x, ottenendo:

L’equazione è impossibile!
Che è un’affermazione palesemente falsa!
EQUAZIONI DI PRIMO GRADO INDETERMINATE
Il secondo caso anomalo per le equazioni di primo grado è quello delle equazioni indeterminate:
In questo caso la forma finale a cui giungiamo è la seguente:

In questo caso ci accorgiamo che qualsiasi valore attribuiamo alla x l’equazione è sempre soddisfatta.
Se proviamo infatti a sostituire valori a caso al posto della x:



L’equazione si dice indeterminata, nel senso che non è determinabile in modo univoco una unica soluzione.
Matematicamente scriviamo che l’equazione vale:

UNO SCHEMA GENERALE PER LE EQUAZIONI DI PRIMO GRADO
Nella figura sotto andiamo a creare uno schema generale per le equazioni di primo grado:

HAI QUALCHE DOMANDA???
Se hai qualche domanda scrivila nei commenti
SCOPRI I CORSI DI MATEMATICA
Se stai preparando l’esame di matematica e vuoi una preparazione completa, scopri i corsi di matematica per completare al meglio la tua conoscenza!