
Per calcolare il rendimento e la varianza di un portafoglio dobbiamo tenere presente i rendimenti, i rischi, le correlazioni e le quote dei titoli presenti nel portafoglio.
RENDIMENTO E VARIANZA DI UN PORTAFOGLIO CON DUE TITOLI
Partiamo dal caso più semplice di portafoglio, ovvero quello che contiene due titoli.
Per calcolare il rendimento del portafoglio usiamo la formula:

Dove:



Mentre per calcolare la varianza possiamo usare la seguente formula:





Ricordando il fatto che la covarianza tra i rendimenti dei titoli è data dal prodotto delle deviazioni standard per la correlazione:

Possiamo riscrivere la formula della deviazione standard del portafoglio nel seguente modo:

La volatilità del portafoglio, nota meglio come deviazione standard, è la radice quadrata della varianza.

ESEMPIO DI RENDIMENTO E VARIANZA DI UN PORTAFOGLIO CON DUE TITOLI
Prendiamo in considerazione due titoli con le seguenti caratteristiche:


Sappiamo inoltre che la loro correzione è pari a:

Vogliamo calcolare il rendimento, la varianza e la deviazione standard del portafoglio con le seguenti quote:

Per quanto riguarda il rendimento abbiamo che:

Ovvero:

Mentre se vogliamo calcolare la varianza del portafoglio usiamo la formula:

Inserendo i dati otteniamo:


A questo punto per calcolare la deviazione standard o rischiosità del portafoglio mettiamo sotto radice quadrata la varianza:

PORTAFOGLIO CON PIU’ DI DUE TITOLI
Come generalizzare la situazione quando abbiamo a disposizione più di due titoli.
Andiamo a vedere quindi come calcolare il rendimento, la varianza e la volatilità (deviazione standard) di un portafoglio con n titoli.
Il tasso di rendimento del portafoglio è la media dei rendimenti dei titoli ponderata per le quote presenti nel portafoglio.

Mentre per quanto riguarda la varianza del portafoglio è la media delle varianze ponderata per i quadrati delle quote sommata al doppio del prodotto dei rischi ponderata per le correlazioni e le quote.

Consideriamo un portafoglio con tre titoli di cui riportiamo le caratteristiche:

Le correlazioni tra i tre titoli sono inoltre:

Calcoliamo in primo luogo il tasso di rendimento del portafoglio:

In secondo luogo passiamo alla varianza:

Da cui possiamo facilmente calcolare la deviazione standard o il rischio del titolo, facendo la radice quadrata:

STAI PREPARANDO L’ESAME DI FINANZA?
Per preparati al meglio sui temi della finanza aziendale e delle teoria del portafoglio accedi ai corsi.
RENDIMENTO E VARIANZA DI UN PORTAFOGLIO CON LE MATRICI
Le matrici offrono un modo certamente singolare per affrontare la questione delrendimento e della varianza di un portafoglio.
RENDIMENTO DI UN PORTAFOGLIO
Per calcolare il rendimento di un portafoglio ci servono il vettore dei rendimenti e il vettore delle quote di portafoglio:

Se andiamo a fare il prodotto scalare tra questi due vettori (riga per colonna) otteniamo proprio il rendimento del portafoglio.
Da notare che se i due vettori sono scritti in riga per rappresentare il primo vettore in riga dobbiamo fare il trasposto:

In questo caso non importa l’ordine con cui facciamo il prodotto.
L’importante è che il primo sia scritto in riga, mentre il secondo in colonna.

Per un rapido ripasso sulle operazioni tra matrici scopri l’articolo correlato.
Per una più ampia visione dell’argomento algebra lineare scopri il corso.
VARIANZA E DEVIAZIONE STANDARD DI UN PORTAFOGLIO
Quando vogliamo calcolare la varianza le cose si fanno un po’ più complicate in quanto dobbiamo utilizzare delle matrici.
La matrice che ci serve per tale opera è quella delle varianze e delle covarianze.

Oltre che il vettore delle quote:

Per ottenere la varianza di un portafoglio andiamo a moltiplicare il vettore trasposto delle quote per la matrice Q delle varianze e covarianze per il vettore delle quote:

MATRICE DELLE VARIANZE
La matrice delle varianze viene calcolata a partire dai rendimenti storici dei titoli:



Oppure anche come:

Tale matrice delle varianze è inoltre collegata alla matrice delle correlazioni, mediante la matrice degli scarti dei titoli.
Se P è la matrice delle correlazioni:

E la matrice S è quella degli scarti o deviazioni standard dei titoli (scritti sulla diagonale principale):

Allora è possibile scrivere la matrice delle varianze Q come:

Da cui possiamo anche ricavare la matrice P delle correlazioni come:

Sviluppando la formula della varianza del portafoglio vista in precedenza:

la possiamo riscrivere anche così:

ESEMPIO DEL CALCOLO DEL RENDIMENTO DELLA VARIANZA CON LE MATRICI
Consideriamo il portafoglio di tre titoli visto in precedenza.
Riportiamone ancora una colta tutte le caratteristiche:

Sapevamo inoltre che le correlazioni erano:

Da cui possiamo scrivere i vettori dei rendimenti e delle quote.

Il tasso di rendimento del portafoglio può dunque essere calcolato come:

Passiamo ora alla volatilità (rischio) del portafoglio.
In questo caso ci servono le seguenti matrici:
- x: vettore quote
- S: matrice degli scarti
- P: matrice delle correlazioni

per calcolare la varianza del portafoglio usiamo la formula:



Ovviamente la deviazione standard o il rischio del titolo è la radice quadrata della varianza

CALCOLI DEL RENDIMENTO E DELLA VARIANZA DI PORTAFOGLIO CON EXCEL
Un modo certamente indolore per calcolare rendimento, varianza e rischio è quello di utilizzare Excel.
Ammesso che tutti i vettori siamo scritti in colonna il calcolo del rendimento di portafoglioè:

Ricordiamoci di fare Ctrl + Shift + Invio al termine dell’operazione.

Se vogliamo invece calcolare la varianza, dopo aver costruito le matrici dei rischi e delle correlazioni possiamo prima calcolare la matrice delle varianze.
Ricordiamo la formula:


Dove:



Ricordiamoci sempre il Ctrl + Shift + Invio al termine dell’operazione.
Nel nostro caso la matrice Q risulta:

Una volta che abbiamo trovato la matrice Q delle varianze e covarianze possiamo andare a calcolare la varianza del portafoglio mediante la formula:

In Excel inseriamo dunque:


HAI QUALCHE DOMANDA?
Se hai qualche domanda scrivila nei commenti.
Per approfondire i temi della finanza scopri i videocorsi.
Per info scrivi un commento sotto l’articolo.
L’investitore si trova a dover valutare due gruppi di titoli.
Il primo gruppo presenta la probabilità del 60% di avere un rendimento del 15% e una probabilità del 40% con un rendimento del -10%.
Il secondo gruppo invece presenta una probabilità del 60% di avere un rendimento del -10% e una probabilità del 40% di avere un rendimento del 15%.
Determinate la volatilità del portafoglio composto da 15 titoli per gruppo.
Ciao Giuseppe,
Per calcolare la media del rendimento utilizziamo la seguente formula:
Media R = somma(rendimenti*probabilità)
Partiamo dal primo gruppo:
media R1 = 0,15*0,60 + (-0,10)*0,40 = 0,05
Proseguiamo con secondo rendimento medio:
media R2 = -0,10*0,60 + 0,15*0,40 = 0,00
Per calcolare la varianza dei rendimenti (chiamiamola 𝛿) usiamo la seguente formula:
𝛿^2 = somma(rendimenti^2*probabilità) – media R^2
dunque partiamo dalla prima
𝛿^2 (titolo 1) = (0,15^2 * 0,60 + 0,10^2 *0,40) -0,05^2
Si prosegue poi con la varianza del secondo titolo in modo analogo
Ricordiamo poi che la deviazione standard o rischio è la radice quadrata della varianza.
Quanto al portafoglio sappiamo che è composto da 15 titoli per gruppo.
Supponendo che ogni titolo ha lo stesso valore (cosa non indicata) immaginiamo che la quota di gruppo sia pari al 50%.
Ora che abbiamo anche le quote si applica la formula che mia hai mandato ricordando che
Covarianza (X,Y) = sigmax * sigmay * correlazione (x,y)
Quello che manca nel testo è proprio la correlazione.
Quindi questo dato lo si potrebbe tranquillamente inventare e porre uguale a zero, 1, o -1, oppure un qualsiasi numero compreso tra -1 e 1
E da li calcolare la varianza del portafoglio.
Poi quando hai la varianza del pff la metti sotto radice quadrata per calcolare la deviazione standard
Per il calcolo della covarianza è sbagliato questo procedimento?
Covarianza = E[(X – EX)(Y – EY)]
dove X e Y sono le variabili casuali (i rendimenti dei due gruppi di titoli), EX e EY sono le loro rispettive aspettative (i loro rendimenti attesi).
Per calcolare la covarianza, dobbiamo prima calcolare le aspettative dei rendimenti dei due gruppi di titoli:
EX = 0,6*0,15 + 0,4*(-0,1) = 0,09+(-0,04)=0,05
EY = 0,6*(-0,1) + 0,4*0,15 = -0,06+0,06=0
Quindi, la covarianza tra i due gruppi di titoli è:
Covarianza = E[(X – EX)(Y – EY)]
= (0,6*(0,15 – 0,05)*(-0,1 – 0,05)) + (0,4*(-0,1 – 0)*(0,15 – 0))
= 0,6*0,1*-0,15+0,4*-0,1*0,15
= -0,009+0,006
= -0,003
Ciao Tiziana
Si quello che ha fatto mi sembra tutto corretto.
ok grazie, ho appena visto un errore sulla fine….
-0,009-0,006=-0,015
avevo dimenticato il –
🙂
Top 😉