Skip to main content
media e varianza campionaria: immagine

In questo articolo parliamo della media, della varianza e della deviazione standard campionaria, ovvero che sono calcolate in un campione

ESEMPIO

Consideriamo un esempio molto semplice che riguarda un campione di 5 unità a cui viene chiesto quante sigarette fumano in un giorno.

I risultati sono riportati nella seguente tabella:

MEDIA CAMPIONARIA

Per calcolare la media campionaria facciamo la somma dei dati e dividiamo per il numero degli stessi.

Notiamo che questa procedura è assolutamente identica a quella per calcolare la media di una popolazione.

La formula che utilizziamo è la seguente:

media e varianza campionaria: formula della media campionaria

Inserendo i numeri a nostra disposizione scriviamo:

media e varianza campionaria: calcolo della media campionaria

Con Excel le cose si fanno molto più semplici dal momento che basta che utilizziamo la formula:

media e varianza campionaria: calcolo con excel della media

VARIANZA CAMPIONARIA

Per ottenere la varianza campionaria possiamo citare due modi.

Il primo modo è quello di dividere la somma dei quadrati degli scarti dalla media per la numerosità del campione meno uno.

Cioè dividiamo la devianza delle x per n-1.

media e varianza campionaria: formula della varianza campionaria

Inserendo i dati che conosciamo scriviamo:

media e varianza campionaria: calcolo della varianza campionaria modo 1

Il secondo modo che possiamo utilizzare è il seguente:

media e varianza campionaria: formula della varianza campionaria: modo 2

In questo caso scriviamo:

media e varianza campionaria: calcolo della varianza campionaria, modo 2

Per calcolare la varianza campionaria con Excel risulta tutto molto semplice poiché basta inserire la formula:

VARIANZA DELLA POPOLAZIONE E VARIANZA CAMPIONARIA

Facciamo chiarezza una volte per tutte sulla differenza che intercorre tra il calcolo della varianza riferito ad una popolazione e il calcolo della varianza campionaria.

La varianza intesa in senso classico (varianza della popolazione) è la media dei quadrati degli scarti e si calcola come segue:

Oppure potrebbe anche essere vista come la media dei quadrati meno il quadrato della media:

Notiamo pure che per fare una distinzione tra questa e la varianza della popolazione abbiamo usato la lettere greca “σ” in contrapposizione alla lettera romana “s” utilizzata per la varianza campionaria.

Notiamo pure che per fare una distinzione tra questa e la varianza della popolazione abbiamo usato la lettere greca “σ” in contrapposizione alla lettera romana “s” utilizzata per la varianza campionaria.

Quest’ultima invece viene calcolata nei modi che abbiamo presentato sopra:

Per ottenere la varianza campionaria a partire dalla varianza della popolazione moltiplichiamo quest’ultima per n e la dividiamo per n–1.

Facendo questa operazione otteniamo infatti che:

Che è la nostra varianza campionaria

PERCHE’ USIAMO UN CALCOLO DIVERSO?

Se abbiamo un modo per calcolare la varianza di una popolazione di dati perché cambiare questa formula quando siamo di fronte ad un campione?

Possiamo trovare la risposta a questa domanda nella più ampia teoria dell’inferenza.

In particolare nella parte che riguarda la correttezza degli stimatori.

Per farla breve supponiamo di avere una popolazione di 10 elementi e consideriamo tutti i possibili campioni con ripetizione e ordinati con 3 elementi di questa popolazione.

(cosa non affatto facile da farsi a mano poiché il numero di campioni sarebbe abbastanza alto)

Comunque se calcoliamo la varianza di ogni singolo campione (1000 varianze) e poi andiamo a fare la media delle varianze non troviamo la varianza della popolazione.

Se invece consideriamo le varianze campionarie come intese in questo articolo, ecco che la loro media coincide magicamente con la vera varianza della popolazione.

Svelato questo arcano passiamo al calcolo della deviazione standard campionaria.

DEVIAZIONE STANDARD CAMPIONARIA

La deviazione standard campionaria è la radice quadrata della varianza campionaria:

la deviazione standard campionaria è la radice quadrata della varianza campionaria

Con i nostri dati scriviamo:

calcolo della deviazione standard campionaria come la radice quadrata della varianza campionaria

Con il foglio elettronico possiamo scrivere:

Dove per varianza intendiamo il calcolo di prima.

Oppure se vogliamo selezionare direttamente i dati andiamo a scrivere:

media e varianza campionaria: calcolo della deviazione standard campionaria con excel: radice della varianza

AVETE DOMANDE SULLA MEDIA, VARIANZA E DEVIAZIONE STANDARD CAMPIONARIA?

Se questo articolo ha stimolato in te qualche domanda scrivila nei commenti.

Con le tue domande puoi aiutare molti altri utenti con le tue stesse difficoltà.

Per approfondire i temi della statistica visita i corsi di statistica.

35 Comments

  • Elena ha detto:

    Ciao Andrea. Tra le esercitazioni in preparazione all’esame, c’è questa a cui non riesco a dare una risposta:
    “Sapendo che una distribuzione ha primo quartile pari a 15 e range interquartile pari a 0, che valori avranno la varianza e la media?”
    Grazie e buona giornata!

    • Andrea ha detto:

      Ciao Elena,
      Grazie per la domanda ;)
      Il range interquartile è la differenza tra il terzo e il primo quartile
      Conoscendo il fatto che questa vale zero e che il primo interquartile vale 15 l’unica cosa che possiamo concludere con certezza è che anche il terzo quartile vale 15.
      Ovviamente siccome la mediana è certamente compresa tra il primo e il terzo quartile la mediana vale certamente 15.
      Non possiamo concludere niente però circa la varianza e la media.
      Questi valori infatti vengono calcolati tenendo conto di tutti i dati (del campione o della popolazione.
      Diversamente se la domanda avesse dato come dato iniziale: “il range dei dati vale zero con il terzo quartile che vale 15”
      (Con il range dei dati intendiamo la differenza tra il max e il min della distribuzione).
      In questo caso potevamo certamente concludere che
      Massimo=minimo=primo quartile = mediana = terzo quartile
      Questi sono certamente uguali anche alla media.
      Essendo che tutti i dati hanno lo stesso valore la varianza vale certamente zero.

  • Salvatore Panucci ha detto:

    ciao andrea!! mi trovo di fronte un esercizio in cui sono presentate le esportazioni e le importazioni dei paesi UE calcolate in milioni di euro. l’esercizio mi dice come cambierebbe il valore della media e della varianza se esprimiamo i valori in euro. Cambierebbe il cv? la cosa che non riesco a capire è che i dati sono già espressi in euro, e quindi non so come muovermi! grazie

    • Andrea ha detto:

      Ciao Salvatore ;)
      Interessante domanda.
      Da quel che ho capito i dati di cui disponi sono in MILIONI di euro.
      Quindi se li devi esprimere in euro li devi moltiplicare per 1 milione ovvero per 10^6.
      In questo caso la media è un operatore lineare che risente della costante moltiplicativa (oltre a quella additiva).
      La media si moltiplicherebbe per 10^6.
      La varianza risente invece del quadrato della costante moltiplicativa, dunque si moltiplica per 10^12.
      Come cambia il CV?
      IL CV è definito come il rapporto tra la deviazione standard e la media.
      Nel nostro caso la deviazione standard è la radice quadrata della varianza.
      Perciò anche la deviazione. st. (come la media si moltiplica per 10^6.
      Dunque il nuovo CV è:
      CV’=(dev.st’)/(media’)=(10^6·dev.st)/(10^6·media)=dev.st/media=CV.
      Il CV dunque non cambia copia quando ci troviamo di fronte ad una trasformazione lineare in cui c’è solamente la variabile moltiplicativa.

      A questo proposito vorrei farti un esempio in cui abbiamo una completa trasformazione lineare.
      Prendi in esame questo caso.
      Sappiamo che la media e la varianza di una certa variabile X siano rispettivamente 5 e 4.
      Se la varianza vale 4 significa la dev. st. vale 2, ovvero la radice di 4.
      Il CV(x)=5/2=2,5

      se trasformiamo la variabile X in 3X-1 come cambiano media, varianza, dev.st e CV?
      La media è un’operatore certamente lineare, dunque:
      M(3X-1)=3M(X)-1=3·5-1=14
      La varianza risente del quadrato della costante moltiplicativa, dunque:
      VAR(3X-1)=3^2·VAR(X)=9·VAR(X)=9·4=36
      il CV è la radice quadrata della varianza dunque:
      CV(3X-1)=radq(36)=6
      tale valore è proprio la costante moltiplicativa per la dev.st di X.
      DEV.ST(3X-1)=3·DEV.ST(X)=3·2=6
      il CV di 3X-1 diventa:
      CV(3X-1)=DEV.ST(3X-1)/MEDIA(3X-1)=6/14=0,4285
      Quando c’è anche una costante additiva il CV cambia certamente.

  • Elena ha detto:

    Ciao Andrea, mi sto preparando per un esame e mi sono imbattuta in questa domanda a cui non riesco a trovare risposta, “In un universo statistico la varianza di una variabile statistica è 30 e la media della varianza campionaria è 29,7. Da quante unità statistiche sono costituiti i campioni?” npn sono sicura di cosa intenda per unità statistiche e non so come procedere. Ti ringrazio in anticipo!

    • Andrea ha detto:

      Ciao Elena,
      Grazie della bella domanda.

      Partiamo dal fatto che la varianza di una popolazione è la media del quadrato degli scarti su tutte le unità della popolazione:
      VARpop = ∑s²/n
      Mentre la media della popolazione è la media dei quadrati degli scarti ponderata per n-1
      VARcamp = ∑s²/(n-1)

      Facendo qualche piccola semplificazione i dati a tua disposizione sono:
      VARpop = ∑s²/n = 30
      VARcamp = ∑s²/(n-1)=29,7

      Ricavando dalle equazioni la sommatoria degli scarti otteniamo che:
      ∑s² = 30n
      ∑s²=29,7(n-1)

      Eguagliando i termini delle due equazioni otteniamo che:
      30n=29,7(n-1)
      Risolvendo l’equazione di primo grado abbiamo che:
      30n = 29,7n – 29,7
      0,3n = 29,7
      n = 29,7/0,3 = 99

      Un altro modo di risolvere il problema è il seguente:
      Sappiamo che la media della varianza campionaria è ottenuta moltiplicando la varianza della popolazione per n e dividendola per (n-1), dunque:

      Media(VARcamp) = VARpop ·n(n-1)
      Inserendo i dati abbiamo che:

      29,7 = 30·n/(n-1)
      Da cui otteniamo l’equazione di prima:
      30n=29,7(n-1)

      Ottenendo dunque che l’ampiezza del capione è pari a 99.

      • Elena ha detto:

        Ti ringrazio ho capito il procedimento, però non capisco perché nel calcolo il – 29,7 diventi positivo, non dovrebbe essere
        30n – 29,7n = – 29,7
        0,3n = -29,7
        n = – 99?
        anche se poi porterebbe appunto un numero negativo, il che non ha senso….

        • Andrea ha detto:

          Giusta osservazione Elena
          In effetti è meglio procedere con questo ragionamento.
          La media delle varianza campionarie è 29,7.
          Questa è stata ottenuta sommando le varianze dei campioni (non corrette) e dividendole per N (numero dei campioni).
          Ora sappiamo la media delle varianza dei campioni non è la vera varianza.
          Per ottenere questa è infatti necessario moltiplicarla per il numero di elementi del campione n e dividerla per (n-1)
          Da qui abbiamo che:
          Media Var(camp) * n / (n-1) = var.(pop)
          Dunque inserendo i numeri:
          29,7*n/(n-1) = 30
          Otteniamo perciò un’equazione di primo grado:
          29,7n = 30(n-1)
          29,7n = 30n-30
          0,3n = 30
          n=30/0,3 = 100

          Dunque gli elementi del campione sono 100.

  • Giovanni ha detto:

    Andrea ti chiedo aiuto per questo quiz… mi sto affacciando adesso alla materia!
    Per un campione di numerosità N estratto da una popolazione con distribuzione di media E(X) e
    varianza VAR(X) si ha che
    A Il Rapporto E(X)/Var(X) è distribuito come una t di Student
    B Il Rapporto E(X)/Var(X) è distribuito come una F di Fisher
    C Il Rapporto E(X)/Var(X) è distribuito come un Chi quadrato

    • Andrea ha detto:

      Ciao Giovanni
      Grazie per la domanda

      Devo ammettere che si tratta di una domanda molto tosta a cui non saprei rispondere
      Poiché è la prima volta che sento di questa possibile distribuzione

      Tuttavia potrei azzardare che si tratta di una t student
      In quanto sia la variabile fisher che il chi quadrato assumono valori strettamente positivi.
      Quindi sembrerebbe logico pensare che tale rapporto possa assumere anche valori nulli o negativi (dal momento che anche la media può essere nulla o negativa)

  • Tania ha detto:

    Buonasera Andrea,

    Ho un esercizio di statistica che non riesco a risolvere:
    “si effettuano 50 lanci con una moneta non truccata. Si vuole sapere qual è la probabilità che la media delle teste uscite sia minore di due volte lo scarto quadratico medio.” (risultato p>0,75).
    Per favore, può gentilmente aiutarmi?
    La ringrazio.
    Cordiali saluti
    Tania

    • Andrea ha detto:

      Ciao Tania, grazie per la domanda.

      Premetto che ho letto molte volte il testo
      Ma non sono sicuro che questa interpretazione corretta…

      Noi vogliamo che la media sia minore di 2 volte sqm.
      Ricordiamo anzitutto che siamo di fronte ad una distribuzione binomiale.
      In tale distribuzione i parametri sono n e p.
      n = numero di lanci = 50 (lo conosciamo)
      p = probabilità = 0,50 (noto poiché il dado è regolare)

      Credo che il problema sia riconducibile al teoremi Chebicev
      che ci dice che La probabilità che la variabile x differisca di una certa quantità k sia pari a
      1-1/k^2
      Nel nostro caso k è il doppio della deviazione standard.
      Nella distribuzione binomiale la del. st si calcola come segue:
      devst =radq( n*p*(1-p) )=radq( 50*0,50*(1-0,50)) = 3,5355
      Ora se vogliamo k è il doppio di tale quantità, ovvero =
      k = 7,071
      Ora dunque p = 1 – 1/7,071^2 = 0,8585
      Non è lo 0,75 del risultato, ma di altre procedure on saprei.
      Dal momento che ho già provato altre tre strade ma molto incoerenti con la richiesta.

  • Roberto ha detto:

    Buonasera Andrea;
    Ho un esercizio di statistica che non riesco a risolvere:
    sia X una variabile casuale normale con media 3 e varianza 4, Quanto vale il quantile di livello x=0.13?
    Grazie in anticipo

    • Andrea ha detto:

      Ciao Roberto.
      Il tuo obiettivo è quello di cercare il quantile 0,13 della distribuzione normale X con media 3 e varianza 4.
      Per calcolarlo usiamo la seguente formula di standardizzazione:
      x_0,13 = mu + z_0,13·sigma

      Dove:
      x_0,13 è il quantile 0,13 della normale X
      mu = è la media di x, ovvero 3
      sigma è la deviazione standard della x, che è la radice di 4, ovvero 2

      La cosa più rognosa è dunque cercare il quantile 0,13 della distribuzione normale z_0,13=???

      Se non disponi di programmi elettronici con excel ti consiglio dunque di ricercare sulle tavole il valore di z associato a questo quantile.
      Certamente tale valore è negativo, quindi se hai delle tavole di z con valori negativi meglio ancora.
      Se le possiedi devi leggere all’interno delle tavole il valore 0,13 oppure quello che si avvicina di più.
      Ad esempio nelle mie tavole vedo che 0,13 è compreso tra 0,1314 e 0,1292.
      Il primo dei due valori è associato al valore di z pari a -1,12, mentre il secondo a -1,13.
      Potresti ad esempio decidere di prendere il valore di z centrale, come ad esempio -1,125.
      Oppure di usare l’interpolazione lineare per essere più preciso.
      Oppure ancora di presedere semplicemente il valore che tra i due si avvicina di più ovvero -1,13.
      Comunque sia il risultato non cambierà più di molto.
      Nel caso tu disponessi di tavole con valori positivi dovresti cercare all’interno delle tavole il complementare a 0,13 ovvero 0,87.
      Questo perché quel 0,13 rappresenta l’area della funzione a sinistra. e di conseguenza l’area a destra è quella complementare.
      Chiaramente bisognerai prendere i valori di z associati a 0,87.
      Il binomio di prima si ripete con i valori 1,12 e 1,13.
      Supponiamo di prendere il valore centrale tra i due, ovvero 1,125.
      A questo punto dovremo cambiare il segno, perché stiamo ragionamento sulla parte sinistra della normale.
      il nostro valore standardizzato sarà dunque -1,125.
      Quest’ultimo valore che abbiamo trovato è il quantile a livello 0,13 SULLA NORMALE.
      Possiamo anche indicarlo con : z_0,13 = -1,125

      A questo punto per trovare il quantile di livello 0,13 sulla nostra X usiamo la seguente formula:
      x_0,13 = mu + z_0,13·sigma
      Sostituendo i valori abbiamo che:
      x_0,13 = 3 – 1,125·2 = 0,75

  • Ilaria ha detto:

    Buonasera Andrea, ho un problema che non riesco a capire, ho anche la soluzione ma non capisco.
    Testo: Un gioco consiste nel lanciare una moneta e nel generare un numero casuale Y tra zero e uno. La vincita è 2Y se compare testa, 1 se compare croce. Calcolare la vincita attesa.
    Seguendo la soluzione viene calcolata la variabile aleatoria indicatrice e la variabile aleatoria speculare. I(t) se esce testa, I(-t) se esce croce
    Viene quindi calcolata la vincita V=2Y I(t)-I(-t)
    Poi viene calcolato il valore atteso, il valore medio della variabile aleatoria distribuita uniformemente ed il risultato finale E[V] viene zero.
    non capisco come sia possibile.
    Mi perdo già al primo passaggio perchè sommerei i valori anzichè sottrarli

    • Andrea ha detto:

      Aspetta mi sto perdendo anche io leggendo il testo, sicura che sia proprio quello che hai scritto (letteralmente)?

    • Andrea ha detto:

      https://boccignone.di.unimi.it/SAD_2017_files/esame_2017-10-30_sol.pdf
      Si riferisce all esercizio sulla seconda pagina immagino

    • Andrea ha detto:

      Secondo me c’è un errore nel testo
      La vincita è 2Y
      Mentre ci dovrebbe essere scritto si perde uno se esce croce
      In questo caso la perdita media sulla croce sarebbe 1/2
      Ovvero 1*0,5
      Dove 1 rappresenta la perdita e 0,5 la probabilità che esca croce
      Ragionando in termini vittoria media sarebbe -1*0,5=-1*1/2 (se la moneta non è truccata)
      Quanto alla vincita con la testa le cose sono un po’ più complesse perche si tratta di generare un numero causale tra 0 e 1.
      Quante possibilità avresti?
      La risposta è infinite!
      Se generi 0,1 la tua vincita media su tutto il gioco sarebbe
      2*0,1*1/2-1*1/2=-0,4
      Se generi 0,2 avresti
      2*0,2*1/2-1*1/2=-0,3
      Se generi 0,3 avresti
      2*0,3*1/2-1*1/2=-0,2
      Se generi 0,4 avresti
      2*0,4*1/2-1*1/2=-0,1
      Se generi 0,5 avresti
      2*0,5*1/2-1*1/2=0
      Se generi 0,6 avresti
      2*0,6*1/2-1*1/2=0,1
      Se generi 0,7 avresti
      2*0,7*1/2-1*1/2=0,2
      Se generi 0,8 avresti
      2*0,8*1/2-1*1/2=0,3
      Se generi 0,2 avresti
      2*0,9*1/2-1*1/2=0,4
      Se il tuo numero può avere solo due cifre decimali facendo la media di questi valori ottieni zero
      Ora considera che potresti generare cifre con due decimali
      0.01, 0.02, 0.03, 0.04,…, 9,99
      Oppure con tre cifre decimali
      0.001, 0.002, 0.003, 0.004,…, 9,999
      O con 4,5,6,10000 cifre decimali
      Da qui hai la necessità di avere una distribuzione continua che è uniforme
      La media di una distribuzione uniforme è (a+b)/2
      a corrisponde allo 0
      b corrisponde a 1
      Il valore medio che quindi puoi generare è
      (0+1)/2=1/2=0,5
      La vincita media è dunque
      P(T)*V(T)+P(C)*V(C)
      P(T) =0,5 è la prob che esca testa
      V(T) è la vittoria media in caso di testa
      Che è pari a 2*valore medio tra 0e1
      = 2*1/2=1
      P(C) è la prob di croce=0,5 (moneta non truccata
      V(C) = -1 (vittoria negativa o perdita se esce croce) che è anche il valore medio stesso di sconfitta dal momento che è sempre quello
      Sostituisci i valori e trovi zero

  • Barbara ha detto:

    Buonasera, innanzitutto volevo ringraziarti per le tue spiegazioni sempre molto chiare e precise. Ho scoperto da poco il tuo sito e sono sollevata perché ora sono dove posso studiare per il mio esame di statistica!

    Ho un dubbio, che forse sembrerà un po’ sciocco, ma sono davvero una principiante in questa materia.

    In un esercizio sul test t di Studenti mi viene chiesto di calcolare la statistica test per campioni indipendenti, ma non mi è data la deviazione standard campionaria quindi deduco che la debbo calcolare in questo modo:
    – elevo al quadrato la differenza tra ogni valore del campione e la media del campione
    – calcolo S facendo la radice quadrata del rapporto tra il valore trovato prima e i gradi di libertà -1

    Il risultato però non mi esce e ho provato a fare i calcoli anche con Excel… sbaglio metodo? Questo procedimento mi pare un po’ lungo: è corretto oppure ne esiste un altro più veloce (considerando che poi devo fare lo stesso per l’altro campione…)?
    Grazie mille in anticipo per la risposta, buona serata.
    Barbara

    • Andrea ha detto:

      Ciao Barbara
      Grazie per la domanda
      La procedura che hai indicato è corretta tranne la divisione
      Dividi quella somma di quadrati degli scarti non per gdl-1, ma per n-1
      Dove n è il numeri di dati del campione
      Per capirlo meglio considera sempre esempi semplici
      Hai 3 dati
      1,3,5
      La media è 3
      La varianza campionaria è
      Modo 1
      [(1-3)^2+(3-3)^2+(5-3)^2]/(3-1)=4
      Oppure
      (1^2+3^2+5^2)/2 – 3^2 *3/2= 4
      Se fai il calcolo su EXCEL puoi anche usare la formula
      DEV.ST.C.(dati)
      Ora è chiaro che se fai a mano i calcoli è più difficile è molte volte porta all’abbandono della materia
      Se devi per forza fare a mano i calcoli ti consiglio questo.
      Fai l’esercizio su meno dati
      Fai tre quattro esercizi solo su quattro dati e controlla con la formula di EXCEL
      Poi inserisci un dato in più e fai 3/4 esercizi con 5 dati
      Poi fallo con sei dati
      Anche se sembra una procedura ripetitiva e priva di significato ti aiuterà a inserirti GRADUALMENTE verso il mondo dei calcoli matematici
      Usare gradienti con minore difficoltà poi la mente si abitua e si tempra

  • Edoardo ha detto:

    Buonasera Andrea,
    ho una domanda forse stupida, nella formula della varianza campionaria vediamo all’interno della sommatoria (xi-media)^2 come posso avere la formula che mi è capitato di vedere dove nella sommatoria rimane xi^2 -media^2 (con la media fuori dalla sommatoria)?
    Grazie in anticipo!

    • Andrea ha detto:

      Ciao Edoardo
      In statistica su distinguono due varianze
      Se hai tutti i dati della popolazione le formule che puoi utilizzare sono:
      VAR = somma(xi – media)^2 /n
      Si tratta della media dei quadrati degli scarti
      In alternativa puoi fare
      VAR = somma (xi)^2 – media^2

      Se però NON possiedi tutti i dati della popolazione e hai a che fare con un campione allora devi calcolare la varianza corretta
      Modo 1
      VAR.C = somma(xi – media)^2 /(n-1)
      Anziché dividere per n dividi per n-1
      Modo2
      VAR = somma (xi)^2/(n-1)- media^2*n/(n-1)
      Modo 3
      Prendi la varianza come se la calcoli sulla popolazione e la moltiplichi per n/(n-1)
      VAR.C= VAR.P *n/(n-1)

  • Rosy ha detto:

    Buongiorno Andrea,
    Sono una principiante in statistica e fatico a capire come risolvere un esercizio così impostato: una certa ditta produce saponi il cui ph è 7.6. In un campione di 25 saponette scelte a caso da un rivenditore autorizzato il ph rilevato è pari a 8 e livello di significatività del 5%. Non ho deviazione standard e devo determinare associazione, test statistico, valore soglia e se rifiuto o accetto l’ipotesi nulla.
    Da quello che ho capito studiando si tratta di un test a una coda in cui devo usare come test statistico il t student perché il campione è piccolo e non ho la deviazione standard Devo calcolare la varianza? Faccio la differenza tra le due medie diviso n – 1, estraggo la radice quadrata e quello diventa il mio s ?

    • Andrea ha detto:

      Ciao Rosaria
      No
      I’m questo caso direi che si tratta di un test a due cose dove il valore centrale è quello ipotizzato 7,5
      In secondo luogo il valore di t lo ricavi così:
      t-test=(media c. – media h.)/SE
      Dove:
      Media c è la media del campione 8
      Media h è la media ipotizzata
      SE è l’errore standard associato al test
      SE=radq(VAR C/n)
      Dove
      VARC è la varianza del campione
      n è la numerosità del campione 25
      Per calcolare la VAR C bisogna fare
      VARC=somma(xi – mediac)^2 /(n-1)
      Dove xi sono i dati del campione
      Mediac è la media del campione

  • gaia ha detto:

    Ciao Andrea, l’esercizio in preparazione all’esame recita: le caratteristiche rilevate da un campione causale di 7 bambini ha fornito i seguenti valori del grado di reattività ad uno stimolo generico Y : 11, 9, 10, 10, 10, 11, 12 e 12. Assumendo che Y sia ben interpretato da una V.C. Normale:
    a) calcolare la media campionaria del grado di reattività ad un stimolo generico Y
    b) stimare la varianza del grado di reattività ad un stimolo generico Y e la varianza dello stimatore media campionaria Y
    c) costruire un intervallo di confidenza per la media della variabile Y al livello del 95%
    Grazie mille <3

  • Mario ha detto:

    Ciao, scusate il disturbo ma non riesco a risolvere la lettera c del seguente esercizio:

    Da una popolazione con u = 100 e varianza o? = 900
    si estrae un campione di ampiezza n = 30.
    a.Quanto valgono media e varianza della media campionaria?
    b.Qual è la probabilità che X > 109?
    c. Qual è la probabilità che 96 ≤ X ≤ 110?
    d. Qual è la probabilità che X ≤ 107?

    Qualcuno potrebbe, gentilmente, aiutarmi?

    • Andrea ha detto:

      Ciao Mario.
      Per prima cosa ricorda le proprietà della media campionaria.
      La media delle medie è pari alla media.
      Dunque la media delle stimatore MEDIA CAMP. campionaria è esattamente pari a u= 100
      La varianza della MEDIA CAMPIONARIA è la varianza della popolazione divisa per la radice quadrata del numero di elementi del campione.
      Dunque:
      VAR (media C.) = 900 / radq(30) = 164,31
      Immagino che quella che hai chiamato X sia la media campionaria.
      Se così è proviamo a rispondere al quesito b.
      Per prima cosa devi standardizzare quel 109.
      Per standardizzarlo ti serve la deviazione standard delle medie campionario, che comunemente chiamo SE (standard error)
      Lo standard error (SE) altro non è che la radice quadrata della varianza delle medie che abbiamo calcolato prima
      dunque:
      SE = radq(164,31) = 12,82
      Adesso standardizziamo quel 109, chiamando z1 il suo valore standardizzato.
      z1 = (109 – media) /SE = (109 – 100) / 12,82 = 0,70

      Adesso la probabilità che X (media c.) sia maggiore di 109 è la stessa probabilità che z (sulla distribuzione normale standardizzata) risulti maggiore di 0,70.
      Scritto matematicamente abbiamo che:
      P(X>109) = P(z>0,70) =
      Usando le tavole della normale standardizzata con ‘area sulla parte sinistra possiamo scrivere:
      P(X>109) = P(z>0,70) = 1 – ∮(0,70) = 1-0,7580 = 0,242

      Se hai avuto difficoltà a capire questa parte non avrai difficoltà a rispondere agli altri due quesiti.
      In caso contrario ti invito a scoprire i due corsi che interessano questa parte.
      PROBABILITA? e INFERENZA
      https://andreailmatematico.it/corsi-statistica/
      Che sono il secondo e il terzo corso di statistica
      Nelle probabilità c’è la parte dedicata al funzionamento della distribuzione NORMALE
      Nella parte dell’inferenza e i test di ipotesi ci sono sia gli intervalli di confidenza sulla media, che i test di ipotesi sulla media che è parte che ti riguarda in questa domanda

  • Marina ha detto:

    Ciao Andrea,
    come si calcola una “media corretta per Abbott” (un ispettore me l’ha chiesta senza darmi altri elementi) ? ho come dati di partenza la media di 3 valori e la dev.st dei tre valori
    Grazie

    • Andrea ha detto:

      Ciao Marina
      Sinceramente è la prima volta che sento questo nome
      Forse intende dire un intervallo di confidenza ma non saprei
      Magari cerca tra i materiali consigliati per la preparazione del test
      Ho visto che alcune università o alcuni libri usano dei concetti molto singolari
      E anche io scopro ogni volta dei nomi e indici nuovi

      • Marcello ha detto:

        Ciao. Ho un esercizio banale su cui ho qualche dubbio, ovviamente nel testo (freedman- purves) non è spiegato nulla, lasciando all’estrema intelligenza dello studente la deduzione di ogni implicazione legata all sola introduzione della formula:
        In un college il peso medio uomo è 66 Kg con SD 9 kg; peso medio donna 57 kg con SD 9 kg.
        Se “prendo insieme” (scritto così nel testo, IPOTIZZO significhi fare la media dei pesi?) SD aumenta, diminuisce o rimane uguale? E perchè?
        Trovo possibili tutte e 3 le cose: 1)aumenta: perchè aumenta la distanza max-min per cui la probabilità di avere valori più spalmati e il 68% si spalma.
        2) rimane uguale, perchè disegnando sommariamente le curve in gran parte si sovrappongono, per cui SD rimane grosso modo uguale.
        3) diminuisce, perchè spostandosi la media al centro dei 2 gruppi il 68% dei valori sarà più facilmente compreso, comprendendo in SD alcuni valori che prima erano fuori, concentrando il 68% in “meno spazio”.

        Non ci ho capito niente… ma non ho il dono della divinazione come i matematici e non sono capace di dedurre ogni aspetto di un argomento dalla sola formula.
        Grazie

        • Andrea ha detto:

          Ciao Marcello
          Questo esercizio si riferisce alla distribuzione normale oppure alla distribuzione delle medie campionarie ?

  • Vittoria Magnarello ha detto:

    Da informazioni derivanti da una precedente analisi, si sa che la durata delle telefonate che arrivano a un call center si distribuisce in modo normale con media M incognita e varianza=16 minuti quadrati.
    Si desidera calcolare la dimensione campionaria minima necessaria per costruire un intervallo della durata media delle chiamate a livello 95% che abbia ampiezza massima di 5 minuti.

    • Andrea ha detto:

      Ciao Vittoria
      Il primo dato importante di questo testo ci dice che conosciamo il valore della varianza della distribuzione il che ci porta alla tavola dei valori z della normale standardizzata.
      Se invece il testo avesse parlato di varianza ignota della popolazione oppure ci avesse fornito direttamente il valore della varianza (o della deviazione standard) del campione ci saremmo proiettati sulle tavole della t-student.
      Calcaliamo dunque dalle tavole della distribuzione normale standardizzata il valore di z associato al percentuale 0,95 che risulta pari a 1,645.
      In secondo luogo teniamo bene a mente come si calcola il valori dell’intervallo I di confidenza
      I = 2·z·𝛿/√n
      dove z è il valore delle tavole, 𝛿 è la deviazione standard (radice di varianza), n la numerosità del campione.
      Da questa formula dobbiamo ricavare il valore n
      Moltiplicando per √n e dividendo per I otteniamo
      √n = 2·z·𝛿/I
      Eleviamo dunque al quadrato per ottenere n
      n = (2·z·𝛿/I)² [ va bene anche scrivere n = 4·z²·𝛿²/I²]
      Inseriamo dunque i dati a disposizione
      n = (2·1,645·4/5)² =…
      Da che hai la tua ampiezza
      Ovviamente se trovi un numero con la virgola puoi tranquillamente approssimare per eccesso ;)

Leave a Reply